专利摘要:
- 19 A B S T R A C T SYSTEM AND METHOD FOR REMOVING CONTAMINANTS FROM A CONTAMINATED GAS STREAM The present invention provides a system (1) for removing contaminants from a contaminated gas stream (10) using a liquid absorbent, the system (1) at least comprising a first and a second separation unit (2A,2B), wherein the first separation unit (2A) comprises at least: - a first separator (21A) having an inlet (22A) for a contaminated gas stream to be separated, a first outlet (23A) for separated gas and a second outlet (24A) for separated liquid absorbent; - a rising conduit (20A) for transporting the contaminated gas stream to the inlet (22A) of the first separator (21A); - a conduit (30A) for removing the separated gas at the first outlet (23A) of the first separator (21A); and - a conduit (40A) for removing separated liquid absorbent at the second outlet (23A) of the first separator (21A); wherein the second separation unit (2B) comprises at least: - a second separator (21B) having an inlet (22B) for a stream to be separated, a first outlet (23B) for separated gas and a second outlet (24B) for separated liquid absorbent; - a rising conduit (20B) for transporting a contaminated stream to the inlet (22B) of the second separator (21B); - a conduit (30B) for removing separated gas at the first outlet (23B) of the second separator (21B); and - 20 - a descending conduit (40B) for removing separated liquid absorbent at the second outlet (24B) of the second separator (21B); wherein the descending conduit (40B) of the second separation unit (2B) is fluidly connected to the rising conduit (20A) of the first separation unit (2A) and wherein the height of the descending conduit (40B) of the second separation unit (2B) is selected such that during use the hydrostatic force in the descending conduit (40B) of the second separation unit (2B) can induce the liquid absorbent in the rising conduit (20A) of the first separation unit (2A) to flow to the inlet (22A) of the first separator (21A). (Figure 1)
公开号:AU2013201348A1
申请号:U2013201348
申请日:2012-09-19
公开日:2013-04-11
发明作者:Hans Christian Hamre;Helmar Van Santen
申请人:Shell Internationale Research Maatschappij BV;
IPC主号:B01D47-00
专利说明:
SYSTEM AND METHOD FOR REMOVING CONTAMINANTS FROM A CONTAMINATED GAS STREAM The present invention relates to a system and method for removing contaminants from a contaminated gas stream, such as a contaminated natural gas or air stream. Various processes are known to remove contaminating 5 components, such as water, hydrates, carbon dioxide (C0 2 ) and/or hydrogen sulphide (H 2 S), from a gas stream such as a natural gas stream. The processes may be based on physical and/or chemical separation techniques. Physical separation techniques use differences in e.g. boiling, 10 condensation and/or freezing points of the various contaminating components to selectively remove one or more of these components in a fractionating column, or differences in density to separate components with different densities in a centrifugal or cyclonic 15 separator. Chemical separation techniques may employ selective absorption or catalytic reactions to convert a contaminating component into a composition that can be easily separated. WO 2009/140993 discloses a method and system for 20 removing contaminants from a contaminated gas stream using a venturi section which is located upstream of a centrifugal fluid separation section, in which venturi section the contaminated gas stream is induced to flow at a higher axial velocity than in the centrifugal fluid 25 separation section. US 4 061 476 discloses a gas purification method wherein gas, containing at least one contaminant and/or noxious component, is contacted with a solid sorption agent.
- 2 There is a constant desire for new and alternative systems and methods for removing contaminants from a contaminated gas stream. It is an object of the present invention to provide a 5 system and method for removing contaminants from a contaminated gas stream in an efficient and economical manner, even if the gas comprises a large fraction of contaminants. It is a further object of the present invention to 10 provide an alternative system and method for removing
H
2 0, C02 and/or H 2 S from a gas stream. One or more of the above or other objects are achieved according to the present invention by providing a system for removing contaminants from a contaminated 15 gas stream using a liquid absorbent, the system at least comprising a first and a second separation unit, wherein the first separation unit comprises at least: - a first separator having an inlet for a contaminated gas stream to be separated, a first outlet for separated 20 gas and a second outlet for separated liquid absorbent; - a rising conduit for transporting the contaminated gas stream to the inlet of the first separator; - a conduit for removing the separated gas at the first outlet of the first separator; and 25 - a conduit for removing separated liquid absorbent at the second outlet of the first separator; wherein the second separation unit comprises at least: - a second separator having an inlet for a stream to be 30 separated, a first outlet for separated gas and a second outlet for separated liquid absorbent; - a rising conduit for transporting a contaminated stream to the inlet of the second separator; - 3 - a conduit for removing separated gas at the first outlet of the second separator; and - a descending conduit for removing separated liquid absorbent at the second outlet of the second separator; 5 wherein the descending conduit of the second separation unit is fluidly connected to the rising conduit of the first separation unit and wherein the height of the descending conduit of the second separation unit is selected such that during use the hydrostatic 10 force in the descending conduit of the second separation unit can induce the liquid absorbent (and preferably also the contaminated gas) in the rising conduit of the first separation unit to flow to the inlet of the first separator. 15 An advantage of the present invention is that contaminants can be removed in an efficient and economical manner, requiring only a very low level of maintenance. Also, if maintenance would be desired, no people would need to go into the system for inspection 20 purposes resulting in safer maintenance operations and less downtime. A further advantage of the present invention is that the system is extremely versatile; as an example, intermediate processing steps (such as heating, cooling, 25 pressurizing, de-pressurizing, addition of fresh absorbent, etc.) can be performed on the various streams, also after construction, as the various conduits are readily accessible. Also, as use is made of a hydrostatic force generated in the system, no pump (or at least less 30 pumping power) is needed in providing the absorbent to the contaminated gas stream to be separated. Also no level controllers are needed.
An even further advantage of the present invention is that the system allows subsea, or more generally, underwater applications. Also, as the system is relatively insensitive to motion, it can be used on 5 floating media, such as a floating platform. Further, the physical height of the system is typically lower than a conventional absorption tower and the system can be very compact (small diameter piping and small vessels); due to its versatility (the shape of the system is not fixed), 10 it can be easily adapted to the needs of a specific location. The contaminated gas stream is not limited in any way and may for example be a natural gas stream, a combustion gas, synthesis gas, an air stream, etc. Preferably, the 15 contaminated gas is a methane-rich stream such as natural gas, containing at least 30 wt.% methane, preferably at least 50 wt.% methane. The person skilled in the art will readily understand that the contaminant is not limited to certain compounds 20 and may include a broad variety of compounds. However, the present invention is in particular suitable for the removal of H 2 0, C02 and/or H 2 S from a contaminated gas stream such as natural gas or a combustion gas. Also, the absorbent to be used in the present 25 invention is not limited in any way. As the person skilled in the art is familiar with the use of an absorbent for the removal of contaminants from a contaminated gas stream, this is not further discussed here in detail. Typically, the absorbent is a liquid or 30 fluidized solid matter with the ability to extract the desired component from the contaminated gas stream; preferably the absorbent is a liquid absorbent. It is preferred that the absorbent is configured to absorb H 2 0, - 5 H 2 S and/or C02 from the contaminated gas stream. It is preferred that the absorbent is a glycol or an amine. If desired, two or more absorbents may be used in the present invention, either at the same time or 5 consecutively. The first, second and optional further separation units as used in the present invention may be any type of separation unit and are not limited in any way; preferably, one or more (or all) of the separation units 10 are absorption units. The first, second and optional further separators as used in the present invention may be any type of separator and are not limited in any way. Preferably the separators are centrifugal separators, for example as 15 described in above-mentioned WO 2009/140993. The person skilled in the art will understand how to arrange the system of the present invention to obtain the desired hydrostatic force, dependent on the prevailing circumstances and properties of the contaminated gas 20 stream and absorbent(s). Typically, the hydrostatic force (or pressure) in the descending conduit of the second separation unit is larger than the accumulated pressure loss in the flow between the second outlet of the second separator and the point (herein also called "connector") 25 where the descending conduit feeds into the rising conduit, hence allowing the absorbent coming from the descending conduit of the second separation unit to mix with the contaminated gas stream (whilst absorbing at least part of the contaminants in the contaminated gas 30 stream) in the rising conduit of the first separation unit and flow into the first separator. To this end, the height of the descending conduit of the second separation unit is preferably from 0.1 to 100 m, preferably above - 6 0.3 m, more preferably above 0.5 m and preferably below 50 m, more preferably below 30 m. Preferably, the descending conduit of the second separation unit is connected to the rising conduit of the 5 first separation unit at a connector. If desired, the connector may be arranged such that improved mixing takes place between the absorbent coming from the descending conduit of the second separation unit and the contaminated gas stream. This improved mixing may for 10 example be achieved by including a sprayer in the connector for spraying absorbent from the descending conduit of the second separation unit into the rising conduit of the first separation unit. Further it is preferred that the descending conduit 15 of the second separation unit contains no pump. According to an especially preferred embodiment of the present invention the system comprises a third separation unit, comprising at least: - a third separator having an inlet for a stream to be 20 separated, a first outlet for separated gas and a second outlet for separated liquid absorbent; - a rising conduit for transporting a contaminated stream to the inlet of the third separator; - a conduit for removing separated gas at the first 25 outlet of the third separator; and - a descending conduit for removing separated liquid absorbent at the second outlet of the second separator; wherein the descending conduit of the third separation unit is fluidly connected to the rising 30 conduit of the second separation unit and wherein the height of the descending conduit of the third separation unit is selected such that during use the hydrostatic force in the descending conduit of the third separation unit can induce the liquid absorbent (and preferably also the contaminated gas stream) in the rising conduit of the second separation unit to flow to the inlet of the second separator. 5 More preferably, the system comprises fourth and optional further separation units comprising the same or similar components as the second separation unit. Again, it is preferred that the descending conduit of the n+1th separation unit is connected to the rising conduit of the 10 nth separation unit at a connector. Also, preferably, the respective descending conduits contain no pump. Further it is preferred that the first, second and optional third and further separation units are located side-by-side. 15 In a further aspect, the present invention provides a method for removing contaminants from a contaminated gas stream, the method at least comprising: (a) providing a contaminated gas stream to be separated; (b) inducing the contaminated gas stream to flow through 20 a rising conduit into a first separator whilst contacting the contaminated stream with a liquid absorbent; (c) separating the stream fed into the first separator thereby obtaining a separated gas and separated liquid absorbent; 25 (d) removing the separated liquid absorbent as obtained in step (c); (e) removing the separated gas and inducing it to flow through a rising conduit into a second separator whilst contacting it with liquid absorbent; 30 (f) separating the stream fed into the second separator thereby obtaining a separated gas and separated liquid absorbent; - 8 (g) removing the separated liquid absorbent as obtained in step (c) through a descending conduit; and (h) removing the separated gas; wherein the descending conduit feeds into the rising 5 conduit in step (b) and wherein the height of the descending conduit is selected such that the hydrostatic force in the descending conduit induces the liquid absorbent to flow through the rising conduit into the first separator. 10 Preferably, the liquid absorbent is mixed with the contaminated gas stream whilst flowing through the rising conduit. Hereinafter the invention will be further illustrated by the following non-limiting drawing. Herein shows: 15 Fig. 1 schematically a schematic side view of a system in accordance with the present invention. For the purpose of this description, same reference numbers refer to same or similar components. Fig. 1 shows a simplified system 1 in accordance with 20 the present invention for removing contaminants from a contaminated gas stream 10. In the embodiment of Fig. 1, the system comprises five separation units 2A-2E (typically absorption units), located side-by-side. Of course, more separation units may be present. Further, 25 the system 1 comprises a recovery unit 3 for recovering and optionally storing absorbent used in the system 1. The first separation unit 2A comprises at least: - a first separator 21A having an inlet 22A for a contaminated gas stream to be separated, a first outlet 30 23A for separated gas and a second outlet 24A for separated liquid absorbent; - 9 - a rising conduit (or "riser") 20A for (substantially upwards) transporting the contaminated gas stream to the inlet 22A of the first separator 21A; - a conduit 30A for removing the separated gas at the 5 first outlet 23A of the first separator 21A; and - a (usually descending) conduit 40A for removing separated liquid absorbent at the second outlet 23A of the first separator 21A. The second separation unit 2B comprises at least: 10 - a second separator 21B having an inlet 22B for a stream to be separated, a first outlet 23B for separated gas and a second outlet 24B for separated liquid absorbent; - a rising conduit 20B for transporting a contaminated stream (coming from the outlet 23A of the first separator 15 21A) to the inlet 22B of the second separator 21B; - a conduit 30B for removing separated gas at the first outlet 23B of the second separator 21B; and - a descending conduit (or "downcomer") 40B for (substantially downwards) removing separated liquid 20 absorbent at the second outlet 24B of the second separator 21B. The third, fourth and fifth separation units 2C, 2D and 2E comprise the same elements as the second separation unit 2B. The conduits 30A-30E are shown in 25 Fig. 1 as descending conduits as well; although it is indeed preferred that conduits 30A-30E transport the gases therein in a substantially downwards manner, it is not excluded that said conduits flow in a substantially horizontal or vertical manner. 30 The descending conduit 40B of the second separation unit 2B is fluidly connected to the rising conduit 20A of the first separation unit 2A at a connector 4A. Similarly, the descending conduits 40C-40E are connected - 10 to the respective rising conduits 20B-D of the respective preceding separation units at connectors 4B-4D. At connector 4E fresh absorbent is fed as stream 40F (from recovery unit 3) to the rising conduit 20E of the fifth 5 separation unit 2E. Of course, fresh absorbent may be fed at other places as well, such as at connectors 4A-4D. The height of the descending conduit 40B of the second separation unit 2B is selected such that during use the hydrostatic force in the descending conduit 40B 10 of the second separation unit 2B can induce the liquid absorbent (coming from stream 40B) and the contaminated gas stream (fed via line 10) in the rising conduit 20A of the first separation unit 2A to flow co-currently to the inlet 22A of the first separator 21A. The heights of the 15 descending conduits 40C-40D are selected similarly. Typically, the height of the descending conduits is from 0.1 to 100 m, preferably from 0.3 to 50 m. As use is made of the hydrostatic force, no pump is needed in the descending conduits 40B-40E. The hydrostatic force that 20 drives the liquid flow into the gas stream at location 4A-4D, is a result of the partial liquid filling of the descending conduits 40B-40E that occurs when separated liquid from the separators 21B-21E is drained into the descending conduits 40B-40E. The actual hydrostatic force 25 is a function of the gas/liquid interface level inside the descending conduits 40B-40E, relative to the location 4A-4D. The actual gas/liquid interface level will be a function of a number of parameters such as fluid properties (e.g. density, viscosity), gas flow pressure 30 loss in the system (depending on actual gas flow rate) and solvent/gas mass ratio requirements. The solvent/gas mass ratio is controlled by the solvent mass flow that is imposed on the system at mixing point 4E.
- 11 During use of the system 1, a contaminated gas stream 10 to be separated is provided. The contaminated gas stream 10 is induced to flow through the rising conduit 20A into the first separator 21A whilst being contacted 5 (at connector 4A) with a liquid absorbent (coming from stream 40B); thus, in rising conduit 20A (as well as in the other rising conduits 20B-20E) the liquid absorbent and contaminated gas flow co-currently. In the rising conduit 20A absorption of contaminants in the 10 contaminated gas by the liquid absorbent takes place. In the first separator 21A stream 20A is separated thereby obtaining separated gas 30A and separated liquid absorbent 40A. The separated liquid absorbent 40A is removed and 15 sent to the recovery unit 3 for recovering and optionally storing absorbent used in the system 1. The absorbent is fed to the fifth separation unit 2E at connector 4E as stream 40F and flows via line 20E, fifth separator 21E, line 40E, line 20D, etc. to first separator 21A, where it 20 is removed again as stream 40A for recovery in recovery unit 3. The separated gas 30A is sent to connector 4B and induced to flow through the rising conduit 20B into the second separator 21B whilst contacting it with absorbent 25 (coming from stream 40C). The stream 20B fed into the second separator 21B is separated thereby obtaining separated gas 30B and separated liquid absorbent 40B. The separated absorbent 40B is removed through the descending conduit 40B and sent to connector 4A. The separated gas 30 30B is similarly processed through separation units 2C-2E and eventually removed from system 1 as stream 30E. If needed, stream 30E may be further processed, e.g. to remove other contaminants, to be liquefied, etc.
- 12 Whilst the liquid absorbent and contaminated gas streams flow co-currently in the rising conduits 20A-20E, the global direction thereof is counter-currently; the liquid absorbent as fed as stream 40F at connector 4E 5 moves to connector 4A, whilst the contaminated gas stream moves from connector 4A to 4E. For inducing the contaminated gas stream 10 (and liquid absorbent coming from stream 40B) to flow through the rising conduit 20A into the first separator 21A, the 10 descending conduit 40B feeds into the rising conduit 20A, whilst using the hydrostatic force in the descending conduit 40B. The rising conduit 20A (as well as the other rising conduits 20B-20E) may contain internals, such as a mesh, to improve the contact between absorbent and 15 contaminated gas. As the person skilled in the art is fully familiar with such internals, this is not further discussed here. A part of the liquid absorbent in the descending conduit 40B may be sent to the connector 4B (instead of 20 to the connector 4A); a similar set-up may be arranged for descending conduits 40C-40E. Also, a part of the absorbent fed into conduit 20A may have been directly obtained from recovery unit 3. The absorbent may be cooled in the recovery unit 3 or 25 in between the separation units 2A-2E, e.g. in the descending conduits 40B-40E. As the absorbent may leave the first separating unit 2A (at outlet 24A) at a higher pressure than when being fed at connector 4E, less pumping power is needed in the recovery unit 3 for 30 recovering the absorbent. As the person skilled in the art readily understands how the absorbent can be recovered (e.g. by boiling off the absorbed contaminant), this is not further discussed here in detail.
- 13 The person skilled in the art will readily understand that many modifications may be made without departing from the scope of the invention. As an example, other intermediate processing steps (such as heating, cooling, 5 pressurizing, de-pressurizing, addition of fresh absorbent, etc.) can be performed on the various streams (e.g. the rising conduits 20B-E and descending conduits 40B-40E), also as a bolt-on after construction, as the various conduits are readily accessible. 10 The present invention is described below with reference to the following Example, which is not intended to limit the scope of the present invention in any way. Example 1 A contaminated natural gas stream containing 10 vol.% 15 C02, was fed at a pressure of 400C and a pressure of 60 bar to a system as described in Figure 1 above (the descending conduits 40B, 40C, 40D and 40E had a height of 5 m), whilst using amine (ADIP-X, obtainable from the Royal Dutch Shell group) as a liquid absorbent. The 20 pressures at various locations in the system are given in Table 1 below.
- 14 Table 1 - pressures (in bar) 4 22 23 24 30 A 60.00 59.89 59.78 59.86 59.72 B 59.72 59.61 59.50 59.58 59.43 C 59.43 59.33 59.21 59.30 59.15 D 59.15 59.05 58.93 59.02 58.87 E 58.87 58.76 58.65 58.73 58.59 The cell in row A and column 4 indicates the pressure in point 4A in Figure 1; the cell in row B and column 22 the pressure at 22B; etc. 5 The gas separated at outlet 30E contained 1 vol.% C02, i.e. at pipeline specification.
权利要求:
Claims (9)
[1] 1. A system (1) for removing contaminants from a contaminated gas stream (10) using a liquid absorbent, the system (1) at least comprising a first and a second separation unit (2A,2B), 5 wherein the first separation unit (2A) comprises at least: - a first separator (21A) having an inlet (22A) for a contaminated gas stream to be separated, a first outlet (23A) for separated gas and a second outlet (24A) for 10 separated liquid absorbent; - a rising conduit (20A) for transporting the contaminated gas stream to the inlet (22A) of the first separator (21A); - a conduit (30A) for removing the separated gas at the 15 first outlet (23A) of the first separator (21A); and - a conduit (40A) for removing separated liquid absorbent at the second outlet (23A) of the first separator (21A); wherein the second separation unit (2B) comprises at least: 20 - a second separator (21B) having an inlet (22B) for a stream to be separated, a first outlet (23B) for separated gas and a second outlet (24B) for separated liquid absorbent; - a rising conduit (20B) for transporting a contaminated 25 stream to the inlet (22B) of the second separator (21B); - a conduit (30B) for removing separated gas at the first outlet (23B) of the second separator (21B); and - a descending conduit (40B) for removing separated liquid absorbent at the second outlet (24B) of the second 30 separator (21B); - 16 wherein the descending conduit (40B) of the second separation unit (2B) is fluidly connected to the rising conduit (20A) of the first separation unit (2A) and wherein the height of the descending conduit (40B) of the 5 second separation unit (2B) is selected such that during use the hydrostatic force in the descending conduit (40B) of the second separation unit (2B) can induce the liquid absorbent in the rising conduit (20A) of the first separation unit (2A) to flow to the inlet (22A) of the 10 first separator (21A).
[2] 2. The system (1) according to claim 1, wherein the height of the descending conduit (40B) of the second separation unit (2B) is from 0.1 to 100 m.
[3] 3. The system (1) according to claim 1 or 2, wherein the 15 descending conduit (40B) of the second separation unit (2B) is connected to the rising conduit (20A) of the first separation unit (2A) at a connector (4A).
[4] 4. The system (1) according to any one of claims 1-3, wherein the descending conduit (40B) of the second 20 separation unit (2B) contains no pump.
[5] 5. The system (1) according to any one of claims 1-4, wherein the system comprises a third separation unit (2C), comprising at least: - a third separator (21C) having an inlet (22C) for a 25 stream to be separated, a first outlet (23C) for separated gas and a second outlet (24C) for separated liquid absorbent; - a rising conduit (20C) for transporting a contaminated stream to the inlet (22C) of the third separator (21C); 30 - a conduit (30C) for removing separated gas at the first outlet (23C) of the third separator (21C); and - 17 - a descending conduit (40C) for removing separated liquid absorbent at the second outlet (24C) of the second separator (21B); wherein the descending conduit (40C) of the third 5 separation unit (2C) is fluidly connected to the rising conduit (20B) of the second separation unit (2B) and wherein the height of the descending conduit (40C) of the third separation unit (2C) is selected such that during use the hydrostatic force in the descending conduit (40C) 10 of the third separation unit (2C) can induce the liquid absorbent in the rising conduit (20B) of the second separation unit (2B) to flow to the inlet (22B) of the second separator (21B).
[6] 6. The system (1) according to any one of claims 1-5, 15 wherein the system comprises fourth and optional further separation units (2D,2E,...) comprising the same components as the second separation unit (2B) as defined above.
[7] 7. The system (1) according to any one of claims 1-6, wherein the first, second and optional third and further 20 separation units (2A,2B,...) are located side-by-side.
[8] 8. A method for removing contaminants from a contaminated gas stream (10), the method at least comprising: (a) providing a contaminated gas stream (10) to be 25 separated; (b) inducing the contaminated gas stream to flow through a rising conduit (20A) into a first separator (21A) whilst contacting the contaminated stream with a liquid absorbent; 30 (c) separating the stream fed into the first separator (21A) thereby obtaining a separated gas (30A) and separated liquid absorbent (40A); - 18 (d) removing the separated liquid absorbent (40A) as obtained in step (c); (e) removing the separated gas (30A) and inducing it to flow through a rising conduit (20B) into a second 5 separator (21B) whilst contacting it with liquid absorbent; (f) separating the stream fed into the second separator (21B) thereby obtaining a separated gas (30B) and separated liquid absorbent (40B); 10 (g) removing the separated liquid absorbent as obtained in step (c) through a descending conduit (40B); and (h) removing the separated gas (30B); wherein the descending conduit feeds (40B) into the rising conduit (20A) in step (b) and wherein the height 15 of the descending conduit (40B) is selected such that the hydrostatic force in the descending conduit (40B) induces the liquid absorbent to flow through the rising conduit (20A) into the first separator (21A).
[9] 9. The method according to claim 8, wherein the liquid 20 absorbent is mixed with the contaminated gas stream whilst flowing through the rising conduit (20A).
类似技术:
公开号 | 公开日 | 专利标题
AU2013201348B2|2014-10-09|System and method for removing contaminants from a contaminated gas stream
AU2016220515B2|2019-02-28|Inner surface features for co-current contactors
KR101847805B1|2018-04-12|Contacting a gas stream with a liquid stream
DK179841B1|2019-07-30|Separating impurities from a gas stream using a vertically oriented co-current contacting system
US10486100B1|2019-11-26|Coalescer for co-current contactors
CA3001479C|2020-04-28|Compact subsea dehydration
AU2013203259B2|2016-09-22|Inline Non-targeted Component Removal
CA2686992A1|2009-11-26|Method and device for removing contaminants from a contaminated gas stream
WO2016005402A1|2016-01-14|Process for producing a purified gas stream by two stage absorption
同族专利:
公开号 | 公开日
EP2747874B1|2015-07-08|
US20140245889A1|2014-09-04|
WO2013041545A1|2013-03-28|
BR112014006491A2|2017-03-28|
AU2013201348B2|2014-10-09|
CA2848603A1|2013-03-28|
EA201400369A1|2014-07-30|
EP2747874A1|2014-07-02|
CN103813849A|2014-05-21|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
AT363918B|1975-05-06|1981-09-10|Hoelter Heinz|METHOD AND DEVICE FOR PURIFYING GAS|
DK348583D0|1983-07-29|1983-07-29|Smidth & Co As F L|METHOD AND APPARATUS FOR REMOVAL OF SULFUR OXIDES FROM HOT ROEGGAS BY THE TOUR METHOD|
SU1376325A1|1986-07-10|1990-08-23|Научно-производственное объединение по крахмалопродуктам|Multistage multicyclone installation|
AU2008356150A1|2007-05-15|2010-06-24|Shell Internationale Research Maatschappij B.V.|Method and device for removing contaminants from a contaminated gas stream|
CN201534043U|2009-11-12|2010-07-28|福建嘉园环保有限责任公司|Integrated rotary adsorption and desorption organic waste gas treatment device|
WO2012121886A1|2011-02-25|2012-09-13|Southern Company|Dispersed bubble reactor for enhanced gas-liquid-solids contact and mass transfer|EP3466520B1|2013-01-25|2021-12-29|ExxonMobil Upstream Research Company|Co-current contactor for contacting a gas stream with a liquid stream|
AR096132A1|2013-05-09|2015-12-09|Exxonmobil Upstream Res Co|SEPARATE CARBON DIOXIDE AND HYDROGEN SULFIDE FROM A NATURAL GAS FLOW WITH CO-CURRENT SYSTEMS IN CONTACT|
AR096078A1|2013-05-09|2015-12-02|Exxonmobil Upstream Res Co|SEPARATION OF IMPURITIES OF A GAS CURRENT USING A CONTACT SYSTEM IN VERTICALLY ORIENTED EQUICORRIENT|
CN104374210A|2014-10-19|2015-02-25|耒阳市诚松有色金属再生有限公司|Dedusting pipeline arrangement structure for smelting furnace|
JP6573675B2|2015-01-09|2019-09-11|エクソンモービル アップストリーム リサーチ カンパニー|Separation of impurities from fluid streams using dual cocurrent contactors.|
US10717039B2|2015-02-17|2020-07-21|Exxonmobil Upstream Research Company|Inner surface features for co-current contractors|
MX2017011064A|2015-03-13|2017-11-10|Exxonmobil Upstream Res Co|Coalescer for co-current contactors.|
WO2017087056A1|2015-11-19|2017-05-26|Exxonmobil Upstream Research Company|Compact subsea dehydration|
US11260342B2|2017-06-15|2022-03-01|Exxonmobil Upstream Research Company|Fractionation system using bundled compact co-current contacting systems|
CA3066895A1|2017-06-15|2018-12-20|Exxonmobil Upstream Research Company|Fractionation system using compact co-current contacting systems|
CN110769917A|2017-06-20|2020-02-07|埃克森美孚上游研究公司|Compact contact system and method for removing sulfur-containing compounds|
EP3672711B1|2017-08-21|2021-09-22|ExxonMobil Upstream Research Company|Integration of cold solvent and acid gas removal|
RU2663170C1|2017-10-30|2018-08-01|Общество с ограниченной ответственностью "Научно-технический центр "Бакор"|Device for cleaning gas from dust |
法律状态:
2015-02-05| FGA| Letters patent sealed or granted (standard patent)|
2017-04-13| MK14| Patent ceased section 143(a) (annual fees not paid) or expired|
优先权:
申请号 | 申请日 | 专利标题
EP11182579.0||2011-09-23||
EP11182579||2011-09-23||
PCT/EP2012/068390|WO2013041545A1|2011-09-23|2012-09-19|System and method for removing contaminants from a contaminated gas stream|
[返回顶部]